Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Water Res X ; 19: 100179, 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2312787

ABSTRACT

The proliferation of new psychoactive substances (NPS) over recent years has made their surveillance complex. The analysis of raw municipal influent wastewater can allow a broader insight into community consumption patterns of NPS. This study examines data from an international wastewater surveillance program that collected and analysed influent wastewater samples from up to 47 sites in 16 countries between 2019 and 2022. Influent wastewater samples were collected over the New Year period and analysed using validated liquid chromatography - mass spectrometry methods. Over the three years, a total of 18 NPS were found in at least one site. Synthetic cathinones were the most found class followed by phenethylamines and designer benzodiazepines. Furthermore, two ketamine analogues, one plant based NPS (mitragynine) and methiopropamine were also quantified across the three years. This work demonstrates that NPS are used across different continents and countries with the use of some more evident in particular regions. For example, mitragynine has highest mass loads in sites in the United States, while eutylone and 3-methylmethcathinone increased considerably in New Zealand and in several European countries, respectively. Moreover, 2F-deschloroketamine, an analogue of ketamine, has emerged more recently and could be quantified in several sites, including one in China, where it is considered as one of the drugs of most concern. Finally, some NPS were detected in specific regions during the initial sampling campaigns and spread to additional sites by the third campaign. Hence, wastewater surveillance can provide an insight into temporal and spatial trends of NPS use.

2.
J Hazard Mater ; 450: 131009, 2023 05 15.
Article in English | MEDLINE | ID: covidwho-2242030

ABSTRACT

WBE has now become a complimentary tool in SARS-CoV-2 surveillance. This was preceded by the established application of WBE to assess the consumption of illicit drugs in communities. It is now timely to build on this and take the opportunity to expand WBE to enable comprehensive assessment of community exposure to chemical stressors and their mixtures. The goal of WBE is to quantify community exposure, discover exposure-outcome associations, and trigger policy, technological or societal intervention strategies with the overarching aim of exposure prevention and public health promotion. To achieve WBE's full potential, the following key aspects require further action: (1) Integration of WBE-HBM (human biomonitoring) initiatives that provide comprehensive community-individual multichemical exposure assessment. (2) Global WBE monitoring campaigns to provide much needed data on exposure in low- and middle-income countries (LMICs) and fill in the gaps in knowledge especially in the underrepresented highly urbanised as well as rural settings in LMICs. (3) Combining WBE with One Health actions to enable effective interventions. (4) Advancements in new analytical tools and methodologies for WBE progression to enable biomarker selection for exposure studies, and to provide sensitive and selective multiresidue analysis for trace multi-biomarker quantification in a complex wastewater matrix. Most of all, further developments of WBE needs to be undertaken by co-design with key stakeholder groups: government organisations, health authorities and private sector.


Subject(s)
COVID-19 , One Health , Humans , Wastewater-Based Epidemiological Monitoring , Biological Monitoring , SARS-CoV-2 , Biomarkers/analysis
3.
Int J Environ Res Public Health ; 20(3)2023 01 25.
Article in English | MEDLINE | ID: covidwho-2216014

ABSTRACT

The consumption of alcohol in a population is usually monitored through individual questionnaires, forensics, and toxicological data. However, consumption estimates have some biases, mainly due to the accumulation of alcohol stocks. This study's objective was to assess alcohol consumption in Slovakia during the COVID-19 pandemic-related lockdown using wastewater-based epidemiology (WBE). Samples of municipal wastewater were collected from three Slovak cities during the lockdown and during a successive period with lifted restrictions in 2020. The study included about 14% of the Slovak population. The urinary alcohol biomarker, ethyl sulfate (EtS), was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). EtS concentrations were used to estimate the per capita alcohol consumption in each city. The average alcohol consumption in the selected cities in 2020 ranged between 2.1 and 327 L/day/1000 inhabitants and increased during days with weaker restrictions. WBE can provide timely information on alcohol consumption at the community level, complementing epidemiology-based monitoring techniques (e.g., population surveys and sales statistics).


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , Humans , Cities , Slovakia/epidemiology , Chromatography, Liquid/methods , Pandemics , Tandem Mass Spectrometry/methods , COVID-19/epidemiology , Communicable Disease Control , Alcohol Drinking/epidemiology , Ethanol/analysis
5.
Water ; 14(5):833, 2022.
Article in English | MDPI | ID: covidwho-1732289

ABSTRACT

(1) Background: The surveillance of SARS-CoV-2 RNA in urban wastewaters allows one to monitor the presence of the virus in a population, including asymptomatic and symptomatic individuals, capturing the real circulation of this pathogen. The aim of this study was to evaluate the performance of different pre-analytical and analytical methods for identifying the presence of SARS-CoV-2 in untreated municipal wastewaters samples by conducting an inter-laboratory proficiency test. (2) Methods: three methods of concentration, namely, (A) Dextran and PEG-6000 two-phase separation, (B) PEG-8000 precipitation without a chloroform purification step and (C) PEG-8000 precipitation with a chloroform purification step were combined with three different protocols of RNA extraction by using commercial kits and were tested by using two primers/probe sets in three different master mixes. (3) Results: PEG-8000 precipitation without chloroform treatment showed the best performance in the SARS-CoV-2 recovery;no major differences were observed among the protocol of RNA extraction and the one-step real-time RT-PCR master mix kits. The highest analytic sensitivity was observed by using primers/probe sets targeting the N1/N3 fragments of SARS-CoV-2. (4) Conclusions: PEG-8000 precipitation in combination with real-time RT-PCR targeting the N gene (two fragments) was the best performing workflow for the detection of SARS-CoV-2 RNA in municipal wastewaters.

6.
Eur J Nutr ; 61(2): 625-636, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1482208

ABSTRACT

PURPOSE: In less than one and a half year, the COVID-19 pandemic has nearly brought to a collapse our health care and economic systems. The scientific research community has concentrated all possible efforts to understand the pathogenesis of this complex disease, and several groups have recently emphasized recommendations for nutritional support in COVID-19 patients. In this scoping review, we aim at encouraging a deeper appreciation of magnesium in clinical nutrition, in view of the vital role of magnesium and the numerous links between the pathophysiology of SARS-CoV-2 infection and magnesium-dependent functions. METHODS: By searching PubMed and Google Scholar from 1990 to date, we review existing evidence from experimental and clinical studies on the role of magnesium in chronic non-communicable diseases and infectious diseases, and we focus on recent reports of alterations of magnesium homeostasis in COVID-19 patients and their association with disease outcomes. Importantly, we conduct a census on ongoing clinical trials specifically dedicated to disclosing the role of magnesium in COVID-19. RESULTS: Despite many methodological limitations, existing data seem to corroborate an association between deranged magnesium homeostasis and COVID-19, and call for further and better studies to explore the prophylactic or therapeutic potential of magnesium supplementation. CONCLUSION: We propose to reconsider the relevance of magnesium, frequently overlooked in clinical practice. Therefore, magnesemia should be monitored and, in case of imbalanced magnesium homeostasis, an appropriate nutritional regimen or supplementation might contribute to protect against SARS-CoV-2 infection, reduce severity of COVID-19 symptoms and facilitate the recovery after the acute phase.


Subject(s)
COVID-19 , Homeostasis , Humans , Magnesium , Pandemics , SARS-CoV-2
7.
Sci Total Environ ; 806(Pt 4): 150816, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1458560

ABSTRACT

Wastewater-based viral surveillance was proposed as a promising approach to monitor the circulation of SARS-CoV-2 in the general population. The aim of this study was to develop an analytical method to detect SARS-CoV-2 RNA in urban wastewater, and apply it to follow the trends of epidemic in the framework of a surveillance network in the Lombardy region (Northern Italy). This area was the first hotspot of COVID-19 in Europe and was severely affected. Composite 24 h samples were collected weekly in eight cities from end-March to mid-June 2020 (first peak of the pandemic). The method developed and optimized, involved virus concentration using PEG centrifugation, and one-step real-time RT-PCR for analysis. SARS-CoV-2 RNA was identified in 65 (61%) out of 107 samples, and the viral concentrations (up to 2.1 E + 05 copies/L) were highest in March-April. By mid-June, wastewater samples tested negative in all the cities corresponding to the very low number of cases recorded in the same period. Viral loads were calculated considering the wastewater daily flow rate and the population served by each wastewater treatment plant, and were used for inter- city comparison. The highest viral loads were found in Brembate, Ranica and Lodi corresponding to the hotspots of the first peak of pandemic. The pattern of decrease of SARS-CoV-2 in wastewater was closely comparable to the decline of active COVID-19 cases in the population, reflecting the effect of lock-down. This study tested wastewater surveillance of SARS-CoV-2 to follow the pandemic trends in one of most affected areas worldwide, demonstrating that it can integrate ongoing virological surveillance of COVID-19, providing information from both symptomatic and asymptomatic individuals, and monitoring the effect of health interventions.


Subject(s)
COVID-19 , Wastewater , Communicable Disease Control , Humans , Pandemics , RNA, Viral , SARS-CoV-2 , Wastewater-Based Epidemiological Monitoring
9.
Water Res ; 199: 117167, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1199119

ABSTRACT

The presence of SARS-CoV-2 RNA in wastewater was first reported in March 2020. Over the subsequent months, the potential for wastewater surveillance to contribute to COVID-19 mitigation programmes has been the focus of intense national and international research activities, gaining the attention of policy makers and the public. As a new application of an established methodology, focused collaboration between public health practitioners and wastewater researchers is essential to developing a common understanding on how, when and where the outputs of this non-invasive community-level approach can deliver actionable outcomes for public health authorities. Within this context, the NORMAN SCORE "SARS-CoV-2 in sewage" database provides a platform for rapid, open access data sharing, validated by the uploading of 276 data sets from nine countries to-date. Through offering direct access to underpinning meta-data sets (and describing its use in data interpretation), the NORMAN SCORE database is a resource for the development of recommendations on minimum data requirements for wastewater pathogen surveillance. It is also a tool to engage public health practitioners in discussions on use of the approach, providing an opportunity to build mutual understanding of the demand and supply for data and facilitate the translation of this promising research application into public health practice.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Public Health , RNA, Viral , Wastewater
10.
Environ Int ; 153: 106540, 2021 08.
Article in English | MEDLINE | ID: covidwho-1157276

ABSTRACT

The COVID-19 outbreak has forced countries to introduce severe restrictive measures to contain its spread. In particular, physical distancing and restriction of movement have had important consequences on human behaviour and potentially also on illicit drug use and supply. These changes can be associated with additional risks for users, in particular due to reduced access to prevention and harm reduction activities. Furthermore, there have been limitations in the amount of data about drug use which can be collected due to restrictions. To goal of this study was to obtain information about potential changes in illicit drug use impacted by COVID-19 restrictions. Wastewater samples were collected in seven cities in the Netherlands, Belgium, Spain and Italy at the beginning of lockdowns (March-May 2020). Using previously established and validated methods, levels of amphetamine (AMP), methamphetamine (METH), MDMA, benzoylecgonine (BE, the main metabolite of cocaine) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH, main metabolite of tetrahydrocannabinol (THC)) were measured and compared with findings from previous years. Important differences in levels of consumed drugs were observed across the considered countries. Whilst for some substances and locations, marked decreases in consumption could be observed (e.g., 50% decrease in MDMA levels compared to previous years). In some cases, similar or even higher levels compared to previous years could be found. Changes in weekly patterns were also observed, however these were not clearly defined for all locations and/or substances. Findings confirm that the current situation is highly heterogeneous and that it remains very difficult to explain and/or predict the effect that the present pandemic has on illicit drug use and availability. However, given the current difficulty in obtaining data due to restrictions, wastewater analysis can provide relevant information about the situation at the local level, which would be hard to obtain otherwise.


Subject(s)
COVID-19 , Illicit Drugs , Substance-Related Disorders , Water Pollutants, Chemical , Belgium , Cities , Communicable Disease Control , Humans , Italy , Netherlands , SARS-CoV-2 , Spain , Substance Abuse Detection , Substance-Related Disorders/epidemiology , Wastewater/analysis , Water Pollutants, Chemical/analysis
11.
Semin Cell Dev Biol ; 115: 37-44, 2021 07.
Article in English | MEDLINE | ID: covidwho-933484

ABSTRACT

Magnesium is an essential element of life, involved in the regulation of metabolism and homeostasis of all the tissues. It also regulates immunological functions, acting on the cells of innate and adaptive immune systems. Magnesium deficiency primes phagocytes, enhances granulocyte oxidative burst, activates endothelial cells and increases the levels of cytokines, thus promoting inflammation. Consequently, a low magnesium status, which is often underdiagnosed, potentiates the reactivity to various immune challenges and is implicated in the pathophysiology of many common chronic diseases. Here we summarize recent advances supporting the link between magnesium deficiency, inflammatory responses and diseases, and offer new hints towards a better understanding of the underlying mechanisms.


Subject(s)
Endothelial Cells/metabolism , Inflammation/metabolism , Magnesium Deficiency/metabolism , Magnesium/metabolism , Animals , Cation Transport Proteins/metabolism , Homeostasis/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL